
Vivechan International Journal of Research, Vol. 10, Issue 1, 2019 ISSN No. 0976-8211

20

Effect of Multiple Test Case Sets and Reduced Test Data of a Test Case Set on
Mutation Testing

a* b cUpdesh Kumar Jaiswal , Suveg Moudgil , Fazal Ahmed Siddiqui
a Department of Information Technology
IMS Engineering College, Ghaziabad, U.P., India
b
Department of Computer Science & Engineering

IMS Engineering College, Ghaziabad, U.P., India
c
Department of Computer Science & Engineering
Integral University, Lucknow, U.P., India

a* updesh.jaiswal@imsec.ac.in

Received: 30.04.2019, Accepted: 24.05.2019

Abstract

Mutation Testing is a white-box, fault-based software testing technique that measures the effectiveness of
the test cases. In mutation testing to kill a mutant at least one test data is required, so to kill all mutants that
can be generated by different types of mutation operators a large number of test data is required. In
general practice to perform testing, tester generates multiple sets of test cases to satisfy the same criterion
or according to the same procedure, and then computes their average performance. In this paper we raise
some questions: Does tester need to generate multiple sets of test cases in mutation testing? If a single test
case set is sufficient to find and kill all the mutants present in a program then how can we reduced the size
of this test case set? To give the answers of these questions we performed experiments on different
programs in a controlled environment. We found that the practice of using multiple sets of test cases is not
necessary in mutation testing and proposed a new approach that can reduce the size and cost of a selected
test case set.

Keywords - Software testing; mutant; mutation testing; test case set; test data

Introduction

Software testing is a complex activity which must be done to find the errors and quality assessment. The
key challenge in the process of software testing is to reduce costs, time and maximize benefits. Software
testing involves test planning, design, execution, evaluation and reporting activities (Y.S, Ma, 2010; Jia
and Harman, 2015). Test design is a very important activity of software testing, it includes reviewing the
test basis, identifying test conditions, designing tests, evaluating them and then designing the test
environment setup. One of the critical tasks in testing is the generation of test data (Y.S, Ma, 2010; Deng
et al., 2013; Untch, 2011; Just et al., 2012).

Mutation testing involves the creation of different mutants and mutant programs of the program being
tested. A mutant program contains at least one syntactic change that is made to an original program and a
mutant is a simple modification in the original program (Denag et al., 2013; Papadakis and Malevris,
2018). Thus each mutant contains at least one single fault. If one test data is generated according to one

Vivechan International Journal of Research, Vol. 10, Issue 1, 2019 ISSN No. 0976-8211

Copyright© 2019 IMSEC 21

mutant, then the total number of test data required to kill all mutants in a program will be equal to the
number of all the possible mutants that can be generated (Untch, 2011; Just et al., 2012; Jia and Harman.,
2015; Kaminski et al., 2013). In practice, this may become a big burden and required high cost as well as
labor.

Example of the Mutants

Let us take an example of a program that can find out the largest integer among the three integers. This
program can be called as “LI program” and has 20 LOC, is shown in Figure 1.

Figure 1: LI program

In the Figure1, on the mutated location “p>r” in line no. 2 of LI Program we can create 5 mutants (p<r,
p<=r, p==r, p! =r, p>=r) by using different relational operators used in C programming language. Since
these 5 mutants are created or mutated at the same location so they are called as same-location mutants
(Untch, 2011; Just et al., 2012).

Example of a Test Case Set to Test the LI Program

To test LI program of Figure 1, we can create a test case set which contains 5 test cases, which are given
below:

T1: All the three integers are equal (for e.g. (10, 10, 10))

1 if(p>q)

2 {if(p>r)

3 {

4 printf("value of integer p is largest in all :%d",p);

5 }

6 else

7 {

8 printf("value of integer r is largest in all :%d",r);

9 }

10 }

11 else

12 {if(r>q)

13 {

14 printf("value of integer r is largest in all :%d",r);

15 }

16 else

17 {

18 printf("value of integer q is largest in all :%d",q);

19 }

20 }

Vivechan International Journal of Research, Vol. 10, Issue 1, 2019 ISSN No. 0976-8211

22

T2: Only two integers are equal (for e.g. (10, 10, 8))

T3: T2 with all permutations (for e.g. (10, 8, 10), (10, 10, 8), (8, 10, 10))

T4: All the three integers have different values (for e.g. (6, 4, 8))

T5: T4 with all permutations (for e.g. (6, 4, 8), (6, 8, 4), (8, 6, 4), (8, 4, 6), (4, 6, 8), (4, 8, 6))

Thus this test case set of LI program has 5 test cases with minimum 10 different test data inputs. We can
create some other different test case sets also to test the similar LI program which depends upon the
knowledge and experience upon the different testers (Y.S, Ma, 2010; Deng et al., 2013; Kaminski et al.,
2013).

Categories of Mutation Operators

Mutation Operator is a rule that is applied to a program for producing the mutants. It is mainly categorized
into three categories (Y.S, Ma, 2010; Deng et al., 2013; Untch, 2011).

1) Operand Replacement Operators: Replace a single operand with another operand or constant.
For example:

if (a > b)

if (8 > b) Replacing a by constant 8.

if (a > c) Replacing b by operand c.

2) Operator Modification Operators: Replace an operator or insert new operators.
 For example:

 if (a == b)

 if (a >= b) Replacing == by >=

 if (a == ++b) Inserting ++ after ==

3) Statement Modification Operators: Delete or replace some line of codes of the program.
For example:

Statement Deletion (SSDL): delete the else part of the if-else statement.

Statement Replace: replace line no. 3 by a return statement.

Some Conditions for a Test Data to Kill a Mutant

If P denotes a program, M denotes a mutant of P on statement S, and T denotes a test data for P, then
following three conditions are satisfied by T to kill M (Abraham, 2017; Souza, 2014; Silva, 2017):

Vivechan International Journal of Research, Vol. 10, Issue 1, 2019 ISSN No. 0976-8211

Copyright© 2019 IMSEC 23

1) Reachability Condition: T must be capable to reach S, if T cannot reach S, it is guaranteed that T will
not kill M.

2) Necessity Condition: It is necessary that T must be able to cause M to have a different state from P on S.

3) Sufficiency Condition: The final state of M must be different from that of P.

Effect of multiple test case sets on mutation testing

In the introduction part of this paper, we have developed the LI program which has 20 LOC and produced
a test case set containing 5 test cases.

Experimental Setup

In similar manner and controlled environment we constructed total 10 test case sets of different size of LI
program to perform mutation testing experiment. The each test case set developed by us was adequate to
kill all the mutants generated by mutation operator and SSDL. Out of 10 adequate test case sets the test
case set which was the smallest in size contained 3 test cases and the test case set which was the largest in
size contained 5 test cases. The values of Median, Mean and Standard Deviation of these 10 adequate test
case sets are given in Table 1.

Table1: Sizes of Adequate Test Case Sets of LI Program

Table 1 shows that the value of Standard Deviation of the size of these 10 test case sets was 0.7265 which
was very less.

Result

We performed similar type of experiments on another 30 different programs and calculated the average
value of Standard Deviations of all 31 programs equal to 0.2125 which was also very less.

Conclusion and Recommendation

From our experiments, we found that there was very little difference between the minimum and
maximum number of test cases when averaged over all 31 programs. As well as the average value of
standard deviations of all 31 programs was 0.2125 only. So we can say that differences in test case set
sizes are not significantly correlated with program size. These experiments indicated that the practice of
using multiple test case sets is not necessary to perform the mutation testing so the use of only one
adequate test case set is sufficient.

 Program Min. No. of Median Mean Max. No. of Standard
 Name Test Cases Test Cases Deviation

 LI 3 3.0 3.5 5 0.7265

Vivechan International Journal of Research, Vol. 10, Issue 1, 2019 ISSN No. 0976-8211

24

We recommend that use multiple test case sets for mutation testing if only a few subjects are selected, but
if many subjects are selected, then the use of multiple test case sets may not increase the accuracy of our
experimental works and does not reduces the cost and time of mutation testing.

Effect of Reduced Test Data of a Test Case Set on Mutation Testing

We observed that it is uncontrollable to generate the test data which can definitely meet the sufficiency
condition, so we used the reachability conditions and the necessity condition to generate test data which
can kill multiple mutants created or mutated at the same location. To show the effect of reduced test data
of a test case on mutation testing in a very systematic way we propose a new approach.

Proposed Approach

According to our approach firstly obtain the reachability conditions and necessity conditions of each
mutant that can be generated by Relational Operator Replacement (ROR) of C programming language.
Then some necessity conditions of same-location mutants are combined into one condition. Finally the
reduced test data is generated by combining and forming a program path according to the original
program, reachability conditions of these mutants, and the combined necessity conditions.

Example of the Combined Necessity Conditions

Let “a” and “b” are two integers. By applying ROR, relational expression “a>b” can be mutated to a>=b,
a==b, a<b, a<=b and a! =b. The necessity conditions of these five same-location mutants will be:

1) (a>b)! = (a>=b)

2) (a>b)! = (a==b)

3) (a>b)! = (a<b)

4) (a>b)! = (a<=b)

5) (a>b)! = (a! =b)

These five conditions can be reduced to:

1') a==b

2') a>=b

3') a! =b

4') True

5') a<b

After more reduction, and combining these conditions, we will get the combined necessity conditions as
(a==b, a<b).

Similarly relational expressions a<=b, a<b, a==b, a>=b, and a! =b all has the similar types of results. In

Vivechan International Journal of Research, Vol. 10, Issue 1, 2019 ISSN No. 0976-8211

Copyright© 2019 IMSEC 25

Table 2, the combined necessity conditions of each relational expression are given.

Table 2: Combined Necessity Conditions of Relational Expression

Experimental Setup

To perform this experiment we selected the same LI program and at location “p>r”, we produced 5
mutants (p<r, p<=r, p==r, p! =r, p>=r) by applying ROR. As (p>q) represents the branch predicate then
reachability condition of “p>r” will be:

 p>q

In case of relational expression “p>r” the combined necessity conditions will be (p<r, p==r). Finally the
desire condition of test data to kill multiple mutants that are mutated at the location “p>r” is obtained as:

 (p>q) && {(p<r) && (p==r)}

= }(p>q) && (p<r)}&& {(p>q) && (p==r)}

=]}(r>p>q)}&& {(p==r)>q}].

In this experiment, we took the test case set of LI program which is described in the introduction part of
this paper. So on applying condition [{(r>p>q)}&& {(p==r)>q}] on the test data inputs of this test case
set, we found the reduced test data as [(6, 4, 8) && (10, 8, 10)]. Table 3 shows, how only these two test
data [(6, 4, 8) && (10, 8, 10)] can kill all five same-location multiple mutants that are mutated at location
“p>r” of LI program.

Results

In Table 3, “0” represents that the particular mutant has generated but output of the LI program is same so
mutant is not killed by corresponding test data and result “1” represents that the particular mutant has
generated and output of the LI program is different so mutant is killed by corresponding test data. In
fourth column “Yes” shows that particular mutant is killed by either first input data or second input data or
by both.

 Relational Expression Combined Necessity Conditions of
 Relational Expression

 a<b a==b, a>b

 a<=b a<b, a>b

 a==b a<b, a>b

 a>=b a<b, a>b

 a>b a<b, a==b

 a!=b a<b, a>b

Vivechan International Journal of Research, Vol. 10, Issue 1, 2019 ISSN No. 0976-8211

26

Table 3: Killing of mutation by reduced test data of a test case set

We performed similar type of experiments on another 30 different programs and found that it is possible
to reduce the size of test data used of every program.

Conclusion and Recommendation

By applying our approach, lesser number of test data is required to kill all the mutants and we can reduce
the size of test data of any given test case set. If reduced size of test data of a test case set is used then cost
and required labor of mutation testing will be very less. So we recommend that in mutation testing, we
should not have the practice of producing and applying multiple test case sets to test a given program but
we should have the practice of reducing the size of test data input of any test case set of the program.

References

Abraham, R., Erwig, M. 2017. Mutation Operators for Spreadsheets. IEEE Transactions on Software
Engineering, 35(1), 94– 108.

Deng, L., Offutt., J., Li, N. 2013. Empirical evaluation of the statement deletion mutation operator. 6th
IEEE International Conference on Software Testing, Verification and Validation (ICST 2013),
Luxembourg.

Just, R., Kapfhammer, G. M., Schweiggert, F. 2012. Do redundant mutants affect the effectiveness and
efficiency of mutation analysis? Eighth Workshop on Mutation Analysis (IEEE Mutation 2012),
Montreal, Canada.

Kaminski, G., Ammann, P., Jeff, Offutt. 2013. Improving logic based testing. Journal of Systems and
Software, 86:2002–2012.

Ma, Y.S., Offutt, J., Kwon, Y.R. 2010. MuJava : An automated class mutation system. Software Testing,
Verification, and Reliability, Wiley, 15 (2), 97–133.

Papadakis, M., Malevris, N. 2018. Searching and Generating Test Inputs for Mutation Testing. Springer
Plus.

 Mutant of “p>r” First input data Second input data Mutant killed
 (6, 4, 8) (10, 8, 10)

 p<r 1 0 Yes

 p<=r 1 1 Yes

 p==r 0 1 Yes

 p!=r 1 0 Yes

 p>=r 0 1 Yes

Vivechan International Journal of Research, Vol. 10, Issue 1, 2019 ISSN No. 0976-8211

27

Silva, R. A., do Rocio Senger de Souza, S., de Souza, P.S.L. 2017. A systematic review on search based
mutation testing. Information and Software Technology.81:19-35.

Souza, F., Papadakis, M., Durelli, V.H., Delamaro, M.E. 2014. Test data generation techniques for
mutation testing: A systematic mapping, Proceedings of the 11th ESELAW, 1–14.

Untch, R. 2011. On reduced neighborhood mutation analysis using a single mutagenic operator. ACM
Southeast Regional Conference, Clemson SC, 19–21.

Yue, J., Mark, Harman. 2015. Constructing subtle faults using higher order mutation testing. In 2008
Eighth IEEE International Working Conference on Source Code Analysis and Manipulation, 249–258,
Beijing.

Copyright© 2019 IMSEC

