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Abstract

We propose a model to describe the interaction between plant population and herbivores when the plant
population is diseased via vector population. Analysis of the system is performed to determine the
stability of equilibrium points for a large range of parameter values. The solutions are shown to be
uniformly bounded for all nonnegative initial conditions. The model predicts that in the absence of vector
population, the infected plant population will not survive. Numerical simulation illustrates the dynamical
behavior of the system.
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Introduction

Plant disease, although directly harmful to plants, also significantly influence the course of human
events. Traditionally, in ecology, plant-herbivore interaction have been considered antagonistic 1.e.
herbivores have negative effect on plants. Thus both disease and herbivore have negative effect on plant
population. Thousands of microbes and wviruses cause infectious disease of plants. In contrast to
pathogens of animals and humans, most plant pathogens are fungi, although bacteria, viruses and
phytoplasms also causes problems compared with many other plant pathogens, the ecology and the
evolution of plant viruses is particularly complex because most are transmitted between plants by
vectors, Transmission of viruses by vectors is determined by many factors such as host susceptibility, the
intensity of cropping, the number, mobility and life stage of the vectors, the spatial distribution and
potency of virus-infected hosts and various other environmental and climatic conditions. There are
relatively few studies that consider spatial processes when relating disease dynamics in the host plant
population to the population dynamics of the vector (Holt et al., 1999; Ferriss ef al., 1993: Ruesink et al.,
1986; Garrett er al., 1999). Recent advances in the development of mathematical models of plant-virus
disease epidemics, which link vector population to host infection dynamics, have facilitated a
consideration of the cause of virus disease epidemics and approaches to their alleviation (Nakasuji et al.,
1885; Vandermeer et al.,1990; Holt et al., 1999; Jeger et al.,1998). The next threatening problem for the
plant population is the effect of toxicant. Since long our environment is getting polluted by different types
of chemicals, emitted due to various human activities, such as industrialization, use of pesticides and
herbicides in agriculture etc. The biological and ecological consequences of a toxicant may be considered
in several ways depending upon the toxic level and type of toxicants. The toxicant can affect the plant
population in both direct and indirect ways. One of the visible direct or indirect effects is death of plant
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population. The direct effect of toxicant may also include alterations in direct mortality and reproductive
rates. The indirect effects may be observed either through the food chain or through the reduction in the
carrying capacity of the environment due to the degradation of habitat. Some mathematical models have
been developed in this direction by several workers (Gordon ef al., 1963; Hallam er al., 1984). In this
paper, the simultancous effect of both disease and toxicant will be studied in a plant-herbivore system.

The Mathematical Formulation

Let H(t) and S(t) be the healthy plant population and infected plant population. Z(t) be the non-healthy
vector population and P{t) be the total vector population where and HI(t) be the herbivore population.
Then the model 1({a) is given by the given set of ordinary differential equations:

i—];[:r{lc— H) — k,ZH — B1HH, (1)
j—f: kyZH — (k3 + r)S— B15H1 e (2)
dz )

3t = keS(P - 2) - Z .. (3)
dH HZ

d—t‘= ry(KIH1 — T1EI{JH—L—11..,H15 e (4)

where r is the host mortality rate , K is the plant density, 8, is the uptake rate of plant population by
herbivore population, (ks + 1) is the sum of disease induced death rate and natural death rate of infected
plant population, ¢ is the natural death rate of vector population, Hy, is the carrying capacity of the
herbivores, f(K) = ryy + r13K is the growth rate of herbivores depending on the plant density, oy is the
decay rate of herbivores due to interaction with infected plant population. Now, let C(t) is the
Concentration of toxicant in the environment at time t, and U(t) is the concentration of toxicant in the
organism at time t. Then the system { 1 -4) under the effect of toxicant can be given by the following system
of ordinary differential equations 1(b)

dH

E:r{lﬁ— H) — k,ZH — 81HH; — oy HU o (5
ds

5 = KaZH = (k3 + r)S — 1SH1 — aHU .. (6)
dZ

= KeS(P - 2) - cZ - A7)
dH HZ

d—t‘ = r,(K)H1 - "'“C'H_:,_ a H, 5 .. (B)
dc

i ST SO 9
S =Q-he (9)
dil d

I:a1lﬂ+:];1wl—(|i+|2:]l] .. (10)

The first two terms on the right hand side in equation (10) denote the organismal net uptake of toxicant
from the environment and the food chain, respectively; due to metabolic processing and other causes. The
parameters a;, dy, ¢, 1;, nand 1; are positive constants. a; denotes the environmental toxicant uptake rate
per unit mass organism, d1 denotes the uptake rate of the toxicant in food per unit mass of organism, 1) is
the concentration of the toxicant in thr resource, ¢, the average rate of food intake per unit mass organism,
1, and 1, are organismal net ingestion and depuration rates of toxicant respectively, The positive constant h
in (10) represents the loss rate of toxicant from the environment including processes such as biological
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transformation, chemical hydolysis, wvolatization, microbial degradation and photosynthesis
degradation. The exogenous rate of toxicant input into the environment is represented by Q.

Boundary Equilibria and Their Local Stability

In this section we will discuss local stability behavior of all the feasible boundary equilibrium points and
the interior equilibrium point of the mathematical model (1)-(4) that we have discussed in previous
section. System has two equilibrium points; the first equilibrium point is the disease-free equilibrium

point i.e Ej(H, S, Z.H,) where H = H_rT H=0,5=0,H,=H,,.The second equilibrium point
1550
. 0, S* KPSt rK . .
E*(H*S* Z* H,*) where H,*= Hy(1 - . (h’.]) 7= T c’H S TTRZ TON and 5% is obtained from the
1 z : 1551

cubic equation AS* + B2 +CS5*+D=0
Where

A=0,Hymqa,a,

B=0Hyo ca;-0, Hyry(Kjaa;-0,Hya 52,3, -0, Hy o4,

[‘ = B] Hu [|{Kﬂ]ﬂ.3 L H|HU1']{K}H4 = BlHﬂ o 4‘.::12

D=8, Hyry(K)cas - rKrs  (K)k kP - 0, Hyry (K)casy

a =k, a, rr(K)+0,Hyr (K),a;=0,Hy a4

dy= kl kzP rl{K}

Remark 1: Biologically it means that in the case of disease-free equilibrium point only the healthy plants
are decreasing due to herbivores and the herbivore population is approaching to its carrying capacity as
there is no negative impact on herbivores. But in the case of endemic equilibrium point, the healthy plant
population goes to a very lower level because of the effect of both disease and herbivores. The jacobian
corresponding to the system (1-4) gives the eigen values corresponding to the equilibrium points. At the
equilibrium point E1 path is attracting in all the directions H. 5, Z, and H1 with the eigen values -(r+0, Hy),
-(ky+r+0,Hg), -c and -r|(K), respectively. Hence it1s locally asymptotically stable.

Now, we will discuss the linear stability of the system by lyapunov's direct method. Let us consider a
positive definite function

2 2 2 2
Vy(H, S, 7, Hy) =“E'+%+”—;+% o (11)

then the time derivative of above equation is given as:

Vi (t) = nyniy + ngnig + ngr + ngi, e (12)
Where, n; = (H-H*), n, = (8 -5%),n; = (Z - Z¥), ng = (H, -H¥)

Now, from equations (1)-(4) and from equation (12) we get:

Va(t) = Vip (1) + Vi (1) + Vig(t) + Vi (1) - (13)
Where

!I'r1.1_{t} = —If_(]" =+ 1{11' + ﬂ1 H;)nf + KjH'“‘ng + {hH;mm.}

Vl'z{t} =—((K;+r+ E1H{}n§ —K;H*nang — KyZ*nyn; + 8,5'nzn,)

Vi(t) = —((K,5" + c)nd 4 (K,Z* — K;P)nyny)
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. Hj
Vis(t) = —{{% + 8" — 1y (K)) ng + agHingny)

Then we can write
Vi =agnd +ayans + aggni + agni + a;ngny + aggny Ny + ageNyfy + az3Nahy + az4No0, A 14)
Where

ayy = r+ K, 2"+ 6,Hy, 8, = —K 27 a,=K H' ag, = Ky +r+ 8, Hja,, = et 8" — 1y (K),

Hgy
Ay = K38" + ¢, 833 = K;ZI" = K;Pa5, = 0,5%, a4 = 0, H;.

Now, we see that by Sylvester's criteria under the following conditions
{i)gafz < 45[115'22.- {ii}Eaﬂ < 2311333,{1“)33%4 < 2311344, fiv}3a§4 < 25'22-':]4‘1{\"} 33%3 < 2322333
Clearly, by Lvapunov's direct method E* is locally asymptotically stable.

Next we will discuss the boundedness of the system (1)-(4) in the following lemma.
Lemma 1: The system is mathematically posed in the region:

kEKP ':T‘:ln - ﬂ.‘_HJHn
T nm

Proof. From equation (1) and (2),we get:

rk
G=(;=H+S<K0< < H, = H,) where vy = max (r+ 0,Hq, ks + r+ 0;Hy)

d(H +5)
T

Then from the above equation we get the following expression as t —00:

rKk—=rH = (k3 + r)s

dH+5)
dt
From equation (3), we get

d7
0 = KaSP — ki SZ — <2

Then we get
dZ
rr = kSpaP — 2

then by usual comparison theorem [Hale, 1980], we get the following expression as t —0%:
di _ k:KP

—=

dt = ¢

From equation {4) we get the following expression as t —»00:

_'E' Hﬂ.

dt
Again, from equation (1) and (2), we get

d{(H + 5)

—= rK — (r+8,H;JH — (ks + r + 8,Hy)8

Let we consider v = max (r + 8, Hy, kg +r + 8,Hy) then
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d(H+5) _rK
dt oy

From equation (8), we get
dH, g
5o = AHy — BH]

.
Where, A =y = 045, and B = L,

1]
then by usual comparison theorem [Hale er al.,1980], we get the following expression as t —oo:
i
dt — B
This completes the proof of lemma.
Now, we will study the global stability of the system in the region G in the following theorem again by

Lyapunov direct method.
Theorem 1: E* is globally asymptotically stable if it satisfies the following conditions:

{i-}a%.‘_ < 43“322. {ll}a%; < 4‘322333,0“}3%4 < 4‘3115“,

e, n A_Kk A Kk, K2KP
%Erﬂ E-|_-|—r+k?.. +EIE_ 2 L] 322—A1{r+k3+|31§—_2!— c
Kk k2KP r(KJH; KA ourK
gy = Ag(c+ Ky S‘-T‘-—} Where dg = II-I ! IBH = e ()
1] i}

a4 = 0,H" 254 = 0, H" + ayHj, a3 = —k,P

Proof: . Let us consider a positive definite function
2 ] X

V,(H,S,Z,H,) = = +H,?+A2?+A3n; .. (15)
then the time dLmulle of above equation is given as:

Vo(t) = nyniy + Agngn; + Agngniz + Agngri, . (16)
Where, n, = (H-H*), n, = (S —S*), n; = (Z - Z*), n4 = (H, - H,*)

Now, from equations (1)-(4) and from equation (16) we get:

Va(t) = Vou (1) + Vap (1) + Voa(t) + Voo (1) o (17)
Where
: LA Kk, Kk, Kk,
Vi, () = {(r+l{,2 +G,B > )n1+Tnz-Tn3+91II iy,
. Kk, B Kk, . . .
V(0 = {(Ka freo,o e )A,nz - A0l = K Z A0, + 6,5°A,n;0,)
. AL KEKP AP KP
Vaa(t) = _{(sz Ay +chy — : - )n§ -2 - ni — K;PAzngng)

Vzl.'[t] - '[(mﬂflﬂa + oy KA, 5" ﬁanilﬂ

=1y (K)A3) ng + a,HiAzn;n,)

¥ BH,
Then we can write
Vi = —(aqnf + azan3 + agang + agenj + ayngy + g0y, + agengng) .. (18)
Where
a; =T+KZ +0,5 -2, a5 = A (K; +1+0, 5 — 1),
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r(K)HjA;  o,rEA Agry(K1A M REKP
1 1 3+ 4 3 2 a1y (K) —ry(KJA; 835 = K.5"A; + cA; — z
H, ¥ BH, :

a3 = —K;P. az, = 8,5 + a H;. a5, = B, H;.

gy =

Now, we see that by Sylvester's criteria under the following conditions V() is negative definite.
(1)a3s < 4a4aaz. (ii)ad; < 4azyas;, (il)aly < 421,84,

Clearly, by Lyapunov's direct method E* is globally asymptotically stable. This completes the proof of
the theorem.

Now we will discuss the stability of the system (5-10). Again for the system, we will analyze the disease-
free equilibrium point effected by toxicant that is, E1(H1, 0,X1, 0, P,U) and the endemic equilirium point
in the polluted environment that is E¥(H*®, 5* X* Z* C* U*), Now, consider the following system:

(1) = f(L,%) . (19)
y(t) = g(y) .. (20)

where, fand g are continuous and locally Lipschitz in x in Rn, and solutions exists for all positive time.
Equation (20) is called asymptotically autonomous with limit equation (19) if f{t, x) — g(y)ast — o0
uniformly forall xin R".

Lemma 2 : (see [13]) Let e be a locally asymptotically stable equilibrium of (20} and w be the @ -limit set
of a forward bounded solution x(t) of (19). If w contains a point y0 such that the solutions of (20), with
y{0) =y convergestoeast—o2, thenw= {e}i.e. x(t) —east— o0,

Corollary: If the solutions of the system ( 19) are bounded and the equilibrium e of the limit system {20) is
globally asymptotically stable than any solution x(t) of the system (19) satisfies x(t) —*east— o2, The
equation (%) and (10) can be solved explicitly and we obtain

Q

r|LII;|DSl]pC{t} =C =h

And

a,C" + dﬂPT'Ifal
Iy +1;

Thus, on applying above corollary in system (5)-(10) we get the following equivalent asymptotic
autonomous system (Thieme et al., 1992),

dH

lim supU(t) = U* =

I= I"'[K_ H} - k1?:H— EIHH-| —111H|.T' I {_2]}
ds

5 = kiZH = (k3 + r)S — 01SH1 — a,HU" - (22)
dzZ

L — Y — (23
=S 2) - (23)
dH Hi

d—t' = (K)H1 - r,m}H—: - g H,§ . (24)

Thus, it is clear that the asymptotic behavior of the system (5)-(10) is equivalent to the asymptotic
behaviour of the system (21)-(24), so that if the system (21)-(24) is stable then so is system (5)-(10).
System (21)-(24) has also two equilibrium points, Firstly disease-free equilibrium point in the presence

toxicant, that is, E,(H.S ,Z,H,) where H = —

TTaU e, and H,=Hy secondly, endemic equilibrium point
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u,S.} 7+ — kaS'P
L]

in polluted environment, that is, E*(H*,S°,X*,Z*) where H, = H,(1 — (0 = ok

H* = rK
N r+ k-|_3+ H’iH]_ +E1U.
And 5% is obtained from AS® +B5*2+CS*+D =0

A=0,Hyoa,a;

B=0,Hgaycas-0;Hyr (K)aja; - 8 Hoya 2, -0, Hy aga,

C=8,Hyr (K)aa,+8,HOr(K)a, - 8, H, oyca,

D=0,HOr (K)ca, - rgry (K)k kP -0, Hyr (K)casy

a; =k, a; =1y (K) + 6, Hyr (K) + 1 (K)a ,U*, a; =0, Hga,

dy= k[ngr[{K]

The Jacobian corresponding to the system (21-24) gives the eigen values corresponding to the
equilibrium points. At the equilibrim point E; spath is attracting in all the directions H, S, Z, and H! with
the Eigen values -(r+ 8, Hg +o, U*), - (ks+r+ 0, Hy + o, U*), -c and -r,(K), respectively. Hence it is locally
asymptotically stable.

Now we will discuss the linear stability of the system by lyapunov's direct method. Let us consider a

positive definite function:

n? nE ni nd
va(u,s,zuu,}:5’+—1+—3+—‘ .. (25)

then the time derivatzive jf abgve equation is given as:

V3(t) = nyri; + noniy + ngriz + ngri, o (26)
Where, n; = (H-H*),n, = (8 -S8*),n; = (Z - Z¥), ny, = (H, - H;*)

Now, from equations (21)-(24) and from equation (26) we get:

V3(t) = Vi (Vs (1) + Vas(t) + Vi (1) -~ (27)
Where

Vay () = —((r + Ky2* + 6, H; + a,U*)ni + K;H*nyn; + 8, H;nyn,)

Via(t) = =((K3 + r + 0;H; + a;U"Ins = K;H'nang — Ky Z7nyng + 8,5 n5ny)

Vis(t) = —((K25" + cInd + (K2Z* — KaPInang)

. 2r H;
Via(® = (4 " = 1,00) v + ayHinyny)

thus we can write equation (27) in the following form

V3 = a3, + 2N} + ag3nd + ag,nf + ay20y N, + 2330305 + ANy Ny + ay30,0, + az4N50, ... (28)
where
. - . . KIH]
ayy = r+ K Z2° + 8, Hi+oU", ay; = —K 2%, a5=K,H, az; = Kz +r+ 8, H] + a;U%a,, = 2“|‘|E_|_1+
L]

045" — ry(K), 233 = Ki5" + ¢, a3 = K27 — K, P — kyH°, a, = 8,H" + o4 Hj, a,, = 8,H;.

Now, we see that by Sylvester's criteria under the following conditions V4(t) is negative definite,

(i)9aj; < 4a,q a5, (i) 3a3; < 2a,,a53, (ili)3a3, < 2a;,844, (V)33 < 2a53844.(v) 3a3; < 2az5a5;
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Clearly, by Lyapunov's direct method E* is locally asymptotically stable. In the next theorem we will

prove the global stability of the system by Lyapunov's direct method.

Theorem 2: E* is globally asymptotically stable if it satisfies the following conditions:

{l) 33%3 < 2311322 {ll} ﬂ?.‘_ < Aqjdas I:]ll}:;ﬂéq_ < 4322344,1 ['l"l"] 33%3 < 232233;

Where
Kk,

ay = r+ K727 4 0,H] +a,U" + E&,E—T~ a2 = =K 7%, a,5=K,H", a2 = Ky + 14 0,H] + a,U" +

azHy  kIKP KNy . uyHy
Bz 2 2c ° - +a S+ +

+“ H, 2
2Kk,

T.. 323 = —sz.. 324 = Ulﬂ'. a].'_ = E]']“'.

rqK3A

+ EH,

= 1y (K).

Proof: Let us consider a positive definite function
ni ni ns n3
ViS5 L) =—+B;,—+Bys— +Bs—
sBSZH)=5+B 5+ B 5 + By
then the time derivative of above equation is given as:
Ve(t) = nyriy + Bynaniy + Bongtiz + Byn,ni,

Where, n, = (H-H*), n, = (S —S*), ny = (Z - Z*), ny = (H, - H,;*)
Now, from equations (21)-(24) and from equation (30) we get:

Vo(0) = Viy (©4Vip (8) + Vig () + Vi (0

Where
_ A Kk,
Vo () = —[(1’ + K+ O HiHy U 48, 5 T)T” = Stnd 4 0,Hon,n,)

Kk, oH, Kk2KP

. Kky

' A
1||'r42(t:| Z—{(K3+I‘+E1H; +ﬂgui+E1E—T+ 5 7
- I{iz'Blninz + B]S-Alnznq_}

. KEKP\  ,  Byk?KP
Via() = =(| K;5" +c = TR Byn; — T Nz~ K;PB;nzng)
- H(KH; aH, | 1y (K)A atyHan?
V() = =((———+ o, 5" + +— + -r BynZ +
44 (1) o H, " 3 BH, 1(K)) Byng 5 )
Then we can write
Vi = =(ay 0] + azgn3 + a33n3 + yenf + 23030 + 814NN, + 824070, + a530;05)

_) E]I‘L% + 51915*]14“2 —

kZKP

333 = KES +C—?—

. (29)
.. (30)
. (31)
Kk
B, T'n%
. (32)

Now, we see that by Sylvester's criteria under the following conditions V,(t) is negative definite,

{l} 33%2 = 25.115]22 {il} ﬂiq_ < Aqqdgg {il]}:!ﬂiq_ < 433_2344. {j"-'} 35.-2;3 < Eazzﬂgg

Conclusion

In this paper, two models have been discussed. In the first model 1(a), the affect of disease on a plant.
Herbivore system via vector population has been studied. It has been observed that both the plant
population and herbivore population, decreases to a lower level as the disease affects it, but the plant
population goes to a lower level due to the effect of both disease and herbivore (fig 1). Inthe second model
1(b). the affect of disease and toxicant has been studied on the plant population and it has been concluded
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that the plant population declines to a very lower level due to the simultaneous effect of both disease and
toxicant (fig 2). Further, it has been observed that the vector population and the herbivore population also
decrease to a lower level due to the effect of toxicant. The local and global stability conditions of both the
models have been derived. The graphs of both the herbivore and healthy plant population have been

plotted using MATLAB software. Numerical simulation of the system has been done in support of our
result,

200 : — - - :
| | eeme— healthy plant
—— infacted plant l
Lanet T wpenress eClor
150+ _- | weewwses herbivore ]
i |

50

Figure 1: Healthy plants and herbivore effected by disease

140 ' ;

T T ™

["=—— healthy plant

120 ; infected plant | |
i wearmnenrs WECHOF
1 Uﬂ .-ﬁ""“*"‘“. TR R AL S PR n:nkml.i St demn hemlmm
80| -
60 | ,
20| ~

t—»

Figure 2: Effect of disease and toxicant on healthy plant population
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