VIVECHAN International Journal of Research, Vol 4, 2013

Finite State Machine Based Modeling and Testing of Web Based
Applications using Mutation Analysis

Nipur’, Rakesh Kumar " and Privanka Gupta'

* Department of Computer Science and Applications, Kanva Gurukul Mahavidyalaya,
Dehradoon, Uttaranchal, India,

*Department of Computer Science and Applications, Kurukshetra University,
Kurukshetra, Harvana, India.

‘Department of Computer Applications, Maharaja Agrasen Institute of Management
and Technology, Old Saharanpur Road, Agrasen Chowk, Jagadhri, Harvana, India.
*guptal00{@gmail.com

Abstract

Increasing popularity of web applications demands for their better testing that can lead to uninterrupted
usage. This paper suggests the testing of web applications by using black box testing mechanism. A
testing methodology that focuses on finding errors of omission for web applications has been suggested
using specifications and mutation analysis. Functional behavior of the application is modeled in the form
of a Finite State Machine, Mutation operators based on specifications are used to generate mutated
versions of model FSM. W method of test case generation is used for generating test cases. Model FSM
and mutated versions are excited using generated iest cases and their comparative analysis is used to
locate errors in sample web application “Online Journal™.

Keywaords - Finite state machine based testing, Mutation specification testing, Web applications testing.

Introduction

Testing plays an important role for assuring quality of any software. Success of testing depends upon
identifying quality test cases. There are a number of testing techniques available that generates test cases
and focuses on detecting errors of some particular category. Basically errors could either be errors of
omission or errors of commission. Taken as a universe of program behaviors if'S is the expected behavior
known as specification and P is the observed behavior called implementation and T is the set of test cases;
the relationship between all could be well analyzed from the Figure 1. There are certain specified
behaviors but are not implemented (5.4) represents errors of omissions; certain programmed behaviors
that were not specified (6.3) represents errors of commission (Jorgensen, 2008).

Program Behaviors
Specification
{expected) {obhserved}

¥i
oV

Test Cases
(werified)

Figure 1: Relationship of Program Behaviors and Test cases (Jorgensen, 2008),
Copyright © 2013 IMSEC 18

Nipur ¢f al.: Finite State Machine Based Modeling and Testing of Web Based Applications

Test cases in T are identified by a testing method. Test cases for (5.4) could only come from black box
testing and for (6, 3) only from white box testing mechanism. Black box testing mechanisms works on
specifications rather than implementations. Specification based testing techniques faces the problem of
redundancy and gaps in test cases identification. Because of this to complete the set of test cases through
such techniques becomes a challenge. Mutation analysis is a test case adequacy criteria generally used
with white box testing techniques to ensure the completeness and effectiveness of test cases.

Demillo et al., (1978) And Budd et al., (1980) have discussed Mutation as a fault-based testing technique.
According to Morell (1990} fault-based testing helps to find out the absence of pre specified faults in a
program. Mutation-based testing works with a set of operators. Each ol the operators modifies the source
code as if an error has been injected. The modified program is known as a mutant. Test cases are
generated and both mutants and original program are executed against them. If any test case can produce
different results then mutant is said to be killed. Otherwise, the mutant is live. Either the mutant program
1s found equivalent to the original program or the test data set1s not adequate and needs enhancement. The
adequacy of a test data set is measured by a mutation score (MS), which is the ratio of the number of killed
mutants to the total number of non-equivalent mutants.

Mutation Testing is based on two basic Assumptions:

(a) The Competent Programmer Hypothesis: In general programmers are competent. i.¢., the programs
they write are nearly correct. And the program which may be corrupted has only very small
mistakes (Demilo, 1978; Patrick, 1997).

(b)Y The Coupling Effect Hypothesis: Large program Faults, which are semantic in nature depends upon
smaller syntactic faults and can be detected with mutation testing. (Patrick, er al,, 1997; How Tai
Wah, 2003},

This work targets on technique to identify test cases for detecting errors of omission. Such errors are
common in all type of applications whether it is desktop, web, network or any other. Web applications and
their use are growing tremendously all around and because of technological advancements and cheaper
access they are now becoming larger, interactive. and essential to the international use of computers. A lot
of business loss could happen if a web based application could not serve the purpose. Therefore it is worth
to work on testing of web applications. A sample web application “online Journal™ is used to explain the
methodology.

In order to identify functional test cases for web application its mandatory to represent its
specifications/functional areas in some formal way that could ease the job of test case identification.
Specifications can be done by making use of many representations like event sequence graphs. finite state
automata machines, Estelle, Petri nets, state charts, Specification and Description Language, Object Z
specification, refinement calculus and many more. Author uses Finite State Machine to model the
behavior of web application.

Therefore this paper works on testing of web based applications targeting to find some probable errors of
omission using black box testing mechanism and in order to ensure the completeness of identified test
cases mutation analysis for specifications i1s used on finite state machine based model of web application.

Mutation testing and specifications

Mutation testing is basically a white box method but it can be used as a black box testing strategy to check
the effectiveness and completeness of test cases derived from specifications. Some of the researchers
have worked in the testing field for specifications and have suggested some mutation operators for some
specification languages.

119

VIVECHAN International Journal of Research, Vol 4, 2013

Pinto Ferraz Fabbri ef al.. (1994) have discussed about the sequencing errors in FSM. They said operation
errors, transfer errors and extra/missing states errors are commonly found in FSMs. They suggested some
mutation operators for FSMs; arc missing, wrong starting state, event missing, event exchanged, event
extra, state extra, output exchanged, output missing, output exira.

Black er al.. (2000) have discussed the use of mutation analysis with model checkers which automatically
generates complete test sets from formal specifications. They have suggested some mutation operators
like ORO (operator replacement operator), SNO (simple expression negation operator), MCO {missing
condition operator) for the same combination and have undergone theoretical as well as empirical
comparison of suggested operators,

Abdurazik et al., (2000) have compared three specification based criteria named specification-mutation
coverage, full predicate coverage, and transition-pair coverage. They have used Mathur and Wong's
PROBSUBSUMES measure for the comparison. They found out that specification mutation
PROBSUBSUMES full predicate and full predicate PROBSUBSUMES specification mutation,
however, neither the full predicate tests nor the specification mutation tests had high transition-pair
scores., and the transition-pair tests did not have high full predicate or specification mutation scores, This
shows that transition-pair tests offer something different from full predicate and specification mutation
tests and the later two are almost similar.

General mutation operators for event sequence graph as suggested by Belh et al, (2006) are: arc
insertion, arc omission, event insertion, event omission. They applied the operations on ESG, FSA, State
charts. They concluded that mutants based on ESG and mutants based on state charts do not differ much in
their fault detection capability.

Beyazit et al., (2010) have suggested three mutation operators for ESGs (1) Insert are (iA) operator adds a
new non-pseudo arc to the model, (2} delete arc (dA) operator removes an existing arc from the model,
and {3) reverse arc (rA) operator reverses the direction of an existing non-pseudo arc in the model. Also
they have suggested three mutation operators for MFSMs (1)Insert transition (iT) operator adds a new
transition to the model, (2) delete transition(dT) operator deletes a transition from the model, and (3)
reverse transition (rT).Operator reverses an existing transition in the model. They have given a formulato
put down an upper limit to the number of first order mutation operators.

Finite state machine and its mutations

A finite state machine 1s a Six-tuple (X1, X2, (), go. 8.), where X1: 1s a finite set of input symbols also
known as the input alphabet . X2: is a finite set of output symbols also known as the Output alphabet. (): 15
a finite set of states. qo € (: is the initial state. 5: () X1 — () is a next state or state transition function. O:
Q= X1 — X2 isan output function (Mathur, 2008).

A FSM is said to be completely specified if from each state in FSM there exists a transition for each input
symbol. A FSM is strongly connected if every state 1s reachable from the initial state. In a FSM two states
are said to be V-equivalence if two states excited yield identical output sequences. Two states in FSM are
said to be K-equivalence if when excited by any input of length k yields identical output sequences, A
FSM is considered minimal if the number of states in 1t 15 less than or equal to any other FSM equivalent to
1L.

A FSM represents the design of the implementation (final system). In order to confirm that the
implementation confirms to the specifications, in spite of using implementation. FSM could be used.
Possible errors that could be there in system could easily be represented by mutated FSM’s (Mathur,
2008). Some probable mutations that can be made to the FSM are insert extra state, delete existing state,

Copyright © 2013 IMSEC 120

Nipur ¢f al.: Finite State Machine Based Modeling and Testing of Web Based Applications

insert extra transition, delete existing transition ete. In figure FSM represents the actual model and its
mutation M represents operation error and extra state error in the implementation,

afl

b/0

FSM M Mutated FSM
MI

b/o

Figure 2: FSM and its Mutation,

Representing Web Application as an FSM

Any web application is an active sequence of user interactions with the application through some
interface provided by the application. These external events change the states of the WAs, Such changes
in states of WAS can easily be modeled with the help of Finite State Machines.

Even the smallest possible real life web application could have large number of states to be represented in
FSM: the problem of state explosion is obvious. Therefore hierarchical representation of FSMs are
recommended for modeling web applications where lower level FSMs represent the complete behaviors
for the subparts of the web application and could be represented as a single state at higher level FSM for
the upper level part of the web application. This gives a neat and understandable representation of weh
application into FSM. This way the behavior/ services provided by the WA are represented as states in
FSM and the movement between different pages of WA can be represented by transitions hetween states
in F5M.

This work discusses the modeling and testing of “online journal publication™ a student’s project for better
understanding of the introduced concepts. This web application provides services in the form of three
major types of users: author, reviewer and general user of the application. This application provides
different services for different categories. Authors themselves need to be registered and can upload their
paper for submission, view other papers; Reviewers are the special type of users who accesses the papers
in different categories and reviews them and finally the papers are uploaded back for the access of all
others. General users need to subscribe to access the material available with the application. Different
categories of papers are placed under different headings like bioscience, computer science, Software
Engineering, Databases, Nano Science ete. files can be uploaded in different formats pdf, xt, doex, doc,
rif. Services provided directly by the application taken as logical pages modeled as states in FSM are
shown intable.

121

VIVECHAN International Journal of Research, Vol, 4, 2013

Table 1: Represents FSM of web application “Online Journal™,

Nexl slateisutput
k1 Sty nonmse 1| 2 3 o L] o] M AN i L] FIy i C (L] SR arl clie [
I & N N &l | C K C id k
ni, W & &
F r
W w
5l Hismaz £ 5N 512 sH 511 sS4 SN R8N RIS
(4]
51 | Logn A N R 111 514 - 54 55 | = = 3 515
(H4]
55 Regmanilivn 52 511 5l 510 313 54 31 518
(4]
54 Author 51 12 L1l g1 514 &K 87 S50 Sidn 5l S5
o k| UL, E
(% arl
ki Revuewer all 512 Al F13 514 = =1 57 sh s 31 ol
o L i, doc
L,]
an
Xh Liengral 5N 512 sH 511 sS4 R8N o 51 FIR
Usir PD '
57 | Upload 52 15N 51 513 S0 - - &l a3
a1} Download L] 51 siz 513 514 31 H15
50 | Subscribe 5215 b b S| 813 IR 54 55 | &6 | L0 - | b5
P e
S| Payeent 8 sl st 513 sl4 - k1 S1%
s
ST Contact us 51 511 S 513 514 - - 51 515
m
S12] Abourus 52 all Al F13 514 = = 31 ol
o
s3] ran s2|su |siz s s | sia] - : 8 | s1
m
514 Edssonal 52 31 512 L1 L 31 51
Boand PLa i
S15] Logout 52 k1
Copyright © 2013 IMSEC 122

Nipur ¢f al.: Finite State Machine Based Modeling and Testing of Web Based Applications

Testing Web Application using Finite State Machine Model

The web application could have probable errors in it that means its behavior doesn’t conform to the
requirements. There could be various types of possible variations, Simplest one is not responding to the
service in the fashion supposed to (incorrect output); another could be link validation (both static and
dynamic) that signifies that when requested for some service through some hypertext, there should be a
proper linkage to that service, it means transition from current position/page to the next correct
position/page; it may be possible to have a page in the application that is not linked with the application
through any means that’s again an error and needs to be tested: other hand it may be possible that a page is
missing, this situation arises when a hypertext is present somewhere but clicking on that hypertext
doesn’t land on any existing page.

Also some probable errors of omission in web applications are;

1. Notexisting output function that leads to absence of correct output

2. Forgotten transitions, means hyperlinks to be placed at different locations of the web pages.

3. Forgotten functionalities in web application{missing pages)

Some possible errors in the sample web application: user asking for particular research paper in
Computer science category but returned with some another (incorrect output); user clicked on hypertext
mentioned registration form but landed in reviewer’s area in spite of registration page; user demanding
for his account details but user accounts page is missing and clicking on hypertext makes no transition.
Such deviations from original web application can be represented by mutated FSM. These mutations
could represent the probable variations {errors) that a web application could have from the original
requirements, Mutations in the FSM can be done by making use of mutation operators.

Each of the mutation operators is supposed to imply some of the probable error situations as signified
above. Some possibilities are 1) Erroneous output: an operator to induce a situation that being at some
stage, having some input it produces an output that varies from the actual one. 2) Improper transition: an
operator to induce a situation that when being at some state, having an acceptable input may land to some
invalid state. 3) Missing page: an operator to induce a situation that being at some stage, having some
input, the transition lands the user no where, which means no actual transition takes place to the required
page and the page is not available. 4) Unwanted /unused pages: there could be some means to find out
some unwanted/unused pages that are actually never demanded.

To test a WA means to determine whether it conforms to the requirements set for it or not. For that purpose
it test case set needs to be generated. One way of generating these test cases could be using the model
FSM for the web application. Test cases for model FSM could be generated by using any one of automata
theoretic test generation techniques like W method, partial W method or UlO- sequence method. Test
generated using W or Wp methods guarantee the detection ofall missing transitions, incorrect transitions,
extra or missing states and errors in the output associated with a transition (Mathur, 2008).

All the FSM including model F5M and mutated FSMs are activated from their initial states with these test
cases generated, The output sequences in each case are recorded and compared. 11 the test case generates
same output in any pair it signifies that the two FSMs are equivalent which means that they possess the
same output behavior for that test case and hence no identified errors in web application otherwise a

123

VIVECHAN International Journal of Research, Vol 4, 2013

mismatch signifies some particular error in web application. Following the above said model it will be

possible to test any web application by representing it as a FSM. The model will be able to find out some

possible error types available in the application and definitely will be able 1o find out the effective and
complete test case set for the procedure.

Algorithm representing the methodology used for testing:

1. Represent the sample web application functional behavior in the form ofa FSM.

2. Generate test cases for FSM by making use of W- method of'test case generation.

2(a) Derive characterization set (w-set) from the description of FSM, which is the set of input
sequences that distinguish the behavior of pair of states in FSM.

1}y Construct the sequence of k-equivalence partitions

2) Traverse these k-equivalence partitions in reverse order to obtain the distinguishing sequences for
each pair of states which forms the elements of w-set.

2(b) Construct the testing tree for FSM and from that tree constructs the transition cover set P, exciting an
FSM with elements of P ensures that all states are reached and all transitions have been traversed at
least once.

2{c) Construct the set £ by making use of input alphabet X and characterization set w:

Z=X"W

2(d) designtherequired testcase T=P.Z

3. Generate first order mutants of FSM by making use of mutation operators like insert arc, delete are,
reverse arc, insert node, delete node,

4. Activate the model FSM (M) and Mutated versions of FSM (M1, M2.....) with the test set T.

5. Results are recorded and compared. Mismatch in M and any of Mi's{where 1=1.2.....) signals an
error. These errors could be one or more out of the set 5={ operation error, transfer error, extra state
error, missing state error |

Implementing proposed testing model on online journal web application

Sample web application online journal is tested Tor errors of omission by making use of the above smd

methodology. The web application in the form of a FSM is represented as a state transition table as in table

P1. Inorder to construct the test set the first step is to find out the characterization set that distinguishes the

states of the web application.

k-equivalence partition tables are constructed by making use of table P1. While calculations three

partitions were formedP1=1{1,2,34.5.6,7}P2={1,2,34,5.6,7,8,9,10,11,12,13}and P3={ 1,2,3.4.5

b, 7,8.9,10,11,12,13} The corresponding tables derived for k=1,2.3 are shown in tableP1,P2,P3. By

making use of these partition tables a table representing distinguishing sequences for all pair of states in

the FSM representing web application is derived and can be found in table 5. From this table finally the w-

set is found which is | PL, C4, AN & PW CR. CR, RC, SR & ID, PD & ID, C2 C4} and it represents the set

of strings that distinguishes all states of the web application,

From the medel FSM a testing tree for the web application is generated and from that transition cover set
for the application is derived which is represented as P={null, C1, C2.C3.C4.C5.C6 .C7, PL, SR &
ID,Clclick, CIUN&PW, CI1C2, CIC3, CIC4, CIC6H, CIAN&PW, CIRN&PW, CIUN&PWC2,
CIUN&PWC3, CIUN&PWCY, CIUN&PWCS, CIUN&PWCH, CIUN&PWSR&ID,
CIUN&PWAr, CIUN&PWClick, CIUN&PWARCI, CIUN&PWArC 2 , CIUNE&PWARC3

Copyright © 2013 IMSEC 124

Nipur ¢f al.: Finite State Machine Based Modeling and Testing of Web Based Applications

CIUN&PWARCS, CIUN&PWARCS | CIUN&ZPWArtclick, CIAN&PWC2Z, CIAN&EPWCS,
CIAN&PWC4, CIAN&PWCS, CIAN&PWCH, CIAN&PW CR, CIAN&PWDoc,
CIAN&PWSR&ID, CIAN&PWAr, CIAN&PWDocCl, CIAN&PWDocC2 |, CIAN&PWDocC3
CIAN&PWDocCS, CIAN&PWDocCo, CIAN&PWDocclick, CIRN&PWC2, CIRN&PWC3,
CIRN&PWCA, CIRN&PWCS, CIRN&PWCH, CIRN&PWRC, CIRN&PWDoe, CIRN&PWSR&ID,
CIRN&PWATR, CIRN&PWelick, PIClick , PIC6, PIC1, PIC2, PIC3, PIC4, IC5, C2C1, C2C3, C2C4,
C2C5, C2C6, C2click, C3C1, C3C2,C3C4,C3C5,C3C6,C3click, C4C1, C4C2, C4C3, C4CS5, C4C06,
Cdclick, C5C1, C5C2, C5C3, C5C4, C5C5, C5C6, Cselick, CoC1 |, C6C2, COC3, CaC4, COCS,
Coelick,SR&IDC1 , SR&IDC2, SR&IDC3, SR&IDC4, SR&IDCS, SR&EIDCH, SR&ID AN&LPW,
SR&ID RN & PW, SR&ID UN & PW, SR&ID PD & 1D, SR&ID click, C7C1,C7elick). Exciting the
FSM representing web application with elements of P ensures that all states are reached and all transitions
have been traversed at least once.

Since the number of states in FSM and final web application are supposed to be same therefore the set
Z=X".W=[null}. {PL.C4, AN & PW CR,CR,RC,SR & ID.PD & ID.C2 C4)
= {null, PL,C4, AN & PWCR,CR,RC,SR& ID. PD & 1D, C2C4)

The desired test set for the web application is given by:

T=FZ

={null, C1, C2,C3.C4,C5,C6 .C7, PL SR & ID,Clclick, CIUN&PW, C1C2, CIC3, C1C4, C1C6,
CIAN&PW, CIRN&PW, CIUN&PWCZ, CIUN&PWC3, CIUN&PWCY, CIUN&PWCS,
CIUN&PWCE, CIUNEKPWSR&ID, CIUN&PWAr, CIUN&PWChck, CIUN&PWAnCI |
CIUN&PWAC 2, CIUN&PWANC3 | CIUN&PWANCS , CIUN&PWArCe . CIUN&PWATrtelick,
CIAN&PWC2, CIAN&PWCS, CIAN&PWC4, CIAN&PWCS, CIAN&PWCS, CIAN&PW CR,
CIAN&PWDoc, CIAN&PWSR&ID, CIAN&PWAR, CIAN&PWDocCl, C1AN&PWDocC2
CIAN&PWDocC3 |, CIAN&PWDocCS, CIAN&PWDocC6, CIAN&PWDocclick, CIRN&PWC2,
CIRN&PWC3, CIRN&PWCS, CIRN&PWCS, CIRN&PWCS, CIRN&PWRC, CIRN&PWDoc.
CIRN&PWSR&ID, CIRN&PWAr, CIRN&PWclick, PI Click . PIC6. PICL. PIC2, PIC3, PIC4,
C5,C2C1,C203,C204,C2C5,C2C6,C2¢lick, C3C1,C3C2,C3C4,C3C5,C3C6,C3click, €4C1, C4C2,
C4C3, C4ACS5, C4C0, Cdclick, C5C1, C3C2, C5C3, C5C4, C5C5, C5C6, Cicelick, CoCl , CoC2, CoC3,
CoC4, CoCs, Coclick SR&IDCT |, SR&IDC2, SR&IDCS, SR&IDC4, SR&IDCS, SR&IDCH, SR&ID
AN&PW, SR&ID RN & PW, SR&ID UN & PW, SR&ID PD & ID, SR&ID click, C7C1,C7click] . {null,
PLCAAN & PWCR.CR.RC.5R &1D.PD & 1D, C2C4].

|

VIVECHAN International Journal of Research, Vol 4, 2013

Table 2: P1.
Next state/output
Sl | Stae Cl) Cvg o Csf Col P ANEPR | RMEP | UNEF | P | RC (® | DOC SR&i | T
L ame I W W W] il L
({111
St | Home S| S1) 51) Ster| S8 SI| 83 ms] - Sl
2) 1] k| 4 D) 3
Ly Login SL| 51| SiDF L1 - o] - - Al al
2 4]] -]
53 Regisrats | S | S1) 81| Siep{ S0 §1] - - - 51 Al
o 1 1 b k| 4 5
L2 Author SI| Bl | GEMP) SR) B1) - SR | STUCa | 595] Sdo | Sl al
1 1] 3 4 C n o c 5
55 Reviewes 1) 51| stwe | si] Sl SIUCa STUCH | 5% | 54 5l 51
1 4] i 4 mn il n i L1
8| Gemenl S| 81| siP) s1) S - SE] e | SIS
Usex 3 D k| 4 D £ 5
5 Upload 51511 81 5 5 - - - 5l 5l
: : P4]
B | Downkad| 5 | 51 5 5 Sl 5| &l
1 2 3 4 5
S | Subseribe | S | 1| S1] SEF | S S & 5 54 Sl T
1) 4] 3 4 ¢ 5
SI] Paymest | S| 51 S sl st - - 811 sl
made 1 3 k| 4 5
5il | Confactus| § 1) siew | 51] S1] - - - 51 5l
1 2 D k| L i
S12| Abomws | 5| 51| - SEP | 51| SL] - - - Al al
3 4] 3 4 5
13| Fa S] S| 81| SE0P | | SL] - - - 5l 5l
1 2 n i 4 5
514 | Editorial S 81 S| siop] S - - - 51 Al
lioard 1 1 1] k| 5
315 | Logom b - - - - L1l -
1
Copyright © 2013 IMSEC 126

Nipur ¢f al.: Finite State Machine Based Modeling and Testing of Web Based Applications

Table 3: P2,

Neat state/ouipat
Gep | State | Stalename | O |2] 63 | €4 Cajoefnm ANEPW | RNEFW | INEPW | PO | BC CH [HIC SREM | an gick} CT
no N
1| & | Home 51| 541 | s62) Si0PD | 513 | S04) S0 - - s 050 | - : 515
o el e | E fi T
2 |52 | Logm 81| 512 | Sl0FD §l4] - 2 53 S - . - 80| 51
o -l ! i] L | 7
53 | Hegimation| 82 | 880 | 812 | SI0FD | 513] &14 - - - - 5L | 814
A T A I I i
i 54 Author S| S| SI0TD QS) SN SRRC | STRCEn | S50 Skdec | 51 514
1 |2 s : |2 L i o L 1 Ik
4 | 55 | Reviewer SHL| SIZ[SIFD | EIT] S14] - - - - STCan| - STUCan | 3980 | 5% 80| 515
d
r. o | 2) 1 fi T | T
3 ih Ceneral SU1| B2 SI0TD QS) SM S0 | Skidoc | 51 513
Lser
1 1 7 2 1] T | T
7|57 | Uplad sr | s sz s3] s A | ss
S PR i | T
58| Dwwnkad | 51| S01| 812 - s3] 514 - - - - Bl 515
11 3 e 1 | 7
i | 89 | Subscribe | S| SNI|OSIZ | SIOFD | 513 514 # & 8 5o - - - . 80| 515
il b S e O B A I i i ' I T
7 S0] Payrresi sL | St s12 LIEN 1T A AR
inade
¥ |z r I | 7
] S0) Comlacius | 52 SI2 | SI0PD | s 514 - gl L1E]
1 1 |7 A I I T
S11 | Aboutws | BE | SEI| - | SI0PD | 513 814] - - - - - - - 8L | 815
7|3 i - i i
513 | FaQ ol TR TR BTl R T - - . - - 8L §15
7 3 1 7 3 ¥ ! !
314 | Editoeial SL| SN Si2 | SIFD g R3] - - - = - 5t 513
Bl o S R 1
7 |55 | Logow f52 |- . = |- - 7 . 5 ol b
7
1 |

127

VIVECHAN International Journal of Research, Vol, 4, 2013

Table 4: P3

Meat state/output
S | Sulcuame | O] €T | €3 | O4 e m ANEMW | RNEPW] UNEPW | PD& | RO CR IR SH&M | ani
m
51 Home Ll SH] SEZ | RITD | 515) 514 53D e SED
1] i T I 2 3 K
5 Loga . S0 5ED | R10FD 541 - = 85 S = = = = -
4 I T 13 4] b
83 Repranon | 53] 510] 562 | S10FD | Bi3] 514 - - N 2 = - = = -
2] I T I 13
54 Minkor - | s skl smEn [515] 514 - « - . - SRRC | A7 an | SWsD | Saides
4 I T I 13 T 7 K 7
53 Revewer - | RIS) RINED | RIS | B4 - - - - BICn | - SMCan | Swsp | sa
hi
] I T I 13 T T k ki
86 | Genenal - | S1| 513 L Sa0ED [SE5 | S14] - - - - - - - SWAD || Sadide
User
] m T I 12 [7
87 1 pload X S0 s12 - BRI 54 - = . - = H -
110 I 1nln
] Downlesad | 32| 811] =12 Si3)34 - . - -
11w I n |
g0 Hoharrihe SXOSI] SL2 f Siepd | SR) 514 - o | g5 gh Sl | - = = 5
1] LT I 2 | § &
S | Pavenen SXl S| si2)- S5 - - - - - - - : -
gk
1l 1 I ln
S| Contaczus | 81 - SE2 0 S0P | S5) 514 - . s - =
1 LI I 2
512 | Abonie s - SINPD | 513 814 - - s £ = = £ i =
1 u T 11 12
513 | FAQ 1S | SIZ | SINPD |83 S| - = : i z z E i 4
1le [T 1 |n
514 | Edijoeisd 10 OSIL | SE2 § S | SIS] - - - - - - - - = -
el
110 ([1l
815 | Lag out - - - - - - - : F - - - = 5
¥

Copyright © 2013 IMSEC

Nipur ¢f al.: Finite State Machine Based Modeling and Testing of Web Based Applications

Table 5: Distinguishing sequences for all pair of states,

s | s X OfSi,x) 0(Sj1) 1| CR RC il
BE PLSR & ID IDSD Nil, Nil 4|15 4 7D Nil
BE PLSH & ID D Nil 5 .6 RC UC A Nil
I | 4 PL, CR. Doc. Ant D Nil K C4 PO Nil
BE PI, RC, Doc, Art D Nil 5 | 3 C4 7D Nil
I | 6 PI, Art D il 5 |9 PD & 1D Nil Ree
L |7 C4PLSR&ID PD Nl s | 1o 4 PD Nil
B C4.FI, SR & ID FD NIl 5 | RC UC At il
W PLPD& 1D, SR & D Nl s |12 RC UC Art il

b 5l RC UC,An Nil
L | W CA.T1, SR & 1D D Nl =11 o T =
1|1 I SR & 1D D Nil =T s = o =
1| 12 PLSK & ID D Nil i & 56 o
WEE PI SR & ID] Nil et B = s .
Pl e I, SR & 1D n Nil o P = =
L |15 PLSR & 1D D i =11 = = =
2 13 A& FWLR Bl all s | 1 SR & 1D sD Nil
: |4 | CR mgm ID, Nl RC i — = .
T | s RC. Doc, SR & ID. Nil UC. Art L3 S AL 5 Nil

An 5 | 14 SR & ID SD Nil
T | 6 SR&ID, An Nil) 6 | 15 C4 PO Nil
z |7 ci PD il 7 |9 C4 Nil D
7 |8 4 Pl il 7 | 1 C4 Nil FD
B PD&ID Nl Rec 71 2 C4 Nil PD
2 | 10 I PD il 71 & C4 Nil PD
T |0 AN & PW CR RC Nil 7 | 14 c4 Nil PD
T EE AN & PW CR RC Nil 7 | s €204 FD Nil
T E AN & PWCR RC Nil 3 |9 C4 Nil PD
7 | 14 AN & PWCR RC il s | 1 C4 Nl D
7 | 15 C204 D Nil s | 2 C4 Nil PD
3 [4 CR Nl RC 8 | 13 4 Nil PD
G RC Nl UC Ant s | C4 Nil D
5 | 6 An Nl Dt g | s €204 PD il
BE I PD Nil 9 | 10 4 PD Nil
B c4 PD il 9 | 1 PD & ID Rec Nil
HE PD & ID il Rec 9 | 12 PD & 1D Ret Nil
3w 4 P Nil 9 | 13 PD & I Rec Nil
1|8 €204 PD Nil 9 | PD & ID Re Nil
BE RC Nil UC.An 9 | 1s C4 D Nil
i |6 CR RC Nil 0] 1 C4 Nil FD
'l E; 4 P Nil 0] 12 4 Nil PD
3|8 4 D Nil 0] 13 4 Nil PD
K PD & ID Nil Rec 0] 14 4 Nil PD
' o4 BD Nil WL C4 PD Nil
4 | R RC il 2] 15 C4 PO il
4 | 12 CR RC Nil i3] 15 C4 PD il
4 |13 CR RC Nil | s 4 PO Nil

129

VIVECHAN International Journal of Research, Vol 4, 2013

Tabhle 6: Mutant M1.

Neat state vfput

Statee | State game | C1{C2) C3 | (4 C3 |08 | PL [ANEPW | RNEPW [UNEPW | PG | R R SR fart | cliek |7
. &id

81 | Bome 1| SUT | 312 | SIOPD 813 | 804 | 33D - il 813
8 |lem SH | 812 | S10FD il 5 8 5 8|31
81| Rogstation | 82] S| 812] SI0FD | 813 S84 8§ |85
| Audor SI1 | 812 | SI0PD | 13| 514 SURC | $7UCn | 595D | Shdac | 81 | 513
8 | Revawer SUT| 512 | SI0FD | 513 | 514 §TUCr] - STUCH | 895D | S8 |81 |813

il
S| Genenal SECLSI2 | S0y 503] &4 SSD | Sidoe | 5L |15
Lser
8 |Upkad [S2]5H]3S0 §13] 514 8 |81
S | Downked | 52 | S} S12]- §13 | 514 I i
| Sehscbe | 82] SLL| 812 | SIOFD | S1Y] S84 - i 5 8 e 8l |81
SIO | Paymest | 52| 51T) 502]- S84 - 1 1
S| Contatus | 82 812 | S0rn | §13 | 514 S8 |51
SI2 | Abeutwm [S |SIT)- | SI0FD| 513) 514 8l |83
813 | Fad) S|S0 | SI2) SIED S0 | S14 - I i
S4 | el [820 SED | SI2] SI0T0 | 513 - I Rk
st
815 | Llogow |82 8l

Copyright © 2013 IMSEC

130

Nipur ¢f al.: Finite State Machine Based Modeling and Testing of Web Based Applications

Tabhle 7: Mutant M2,

Next state/vit pul
Sta | Stale C|C |C | C4 C ClH ANL RN& | UN&E | PD RC CR | OO | SR art eli | ©
e name 112 |3 5 |6 W W PW &id &id ck | 7
THE
51 | Home 15 |5 |Slo| 5 |§ |5¥ - Sl
29101 1]12|eD 13 4] I 13
51 | Login 5 |5 | sl b b 53 Sh - sl |5
I]12] FD 14 15
3 Regsir 5185 5 S0l & 5 - - - - - sl 5
ation 2011 121 MD 131 14 15
5| Awthor S5 |55 |5 |- SRl STU | 5% | SRd SIS
11| 12| PD 131 4 RC | Car 5D | 15
55 | Review 5 |5 |[S1I0] 5 |5 87U sTu 59 S8 1818
er 11112 D IR) C.an C.ar SD | doc 15
56 | General 5 5 |50 85 1§ S | s8d |51] 5
Ulser 11| 12| PD 13] 14 0| oec 13
ST | Upload | S |8 | g gz | - & - st s
2] 11 131 14 15
58 | Downlo| S|S [|§ 515 5115
ad 2] 1|12 13114 13
S | Subsci | S| S5 | S | 8100)& |5 5 53 56 Sl 51
I 21 H 12| D 131 14 Tec 13
& | Poymen| S5 | 8 L - - - 5118
0 | tmode [201112 3] 14 15
=l Contact | S S0/ 1§ 3 l- - - - - al]
| s 2 12| PD 13|14 15
81 | About 5|5 Sl] 8 |8 1] S
2 [211 P 13114 15
sl | FAQ a3 RE 10 - af | §
3 2| 1 |12] D 13| 4 13
b1 Editoria| & | § 300 | S - - - - 51 5
4 iBoard | 2 | 11 |12 | PD 13 13
sl Logout| § - - - - - - - s11 -
5)

131

VIVECHAN International Journal of Research, Vol 4, 2013

Tahle 8: Mutant M3.

Next state/ontput
Sta | State cloc|C |4 cClc|nm ANL | RN& | UNE | PD R CR | OO | SR art eli |
fe | name 1|2 |3 L PW W W Seid i ck | 7
n.
51 | Home S8 |5 |S1W |5 |5 |s¥ Sl 5
2110 12| PrD 13 14]I 15
52 | Login 5185 | Sl 5 &4 83 Sh 3k] &
1| 12| Prx 14 15
3 | Registr | S |5 |8 |SW]S |5 s 51| 8
ation 2 11 12 | PDy 131 14 13
84 | Author S5 |Slw]5 |8 g8 | STU | SU | SEd|S1] S
1] 12|r 131 14 RC | Can D | x 15
35 | Review S8 |5W]S |5 s S0 | Sw | sE | S1L]S
er 1] 12| Pp 131 14 Carm {ar S0 dog 13
56 | General S5 |[5WW]S |5 SOl SRS]S
User 1] 12| PR 13] 14 o8] oc 15
57 Upload | 5 | 5 5 - 5 5 - - sl 5
Foparg oux 5] 14 15
58 | Downlo | 5 |5 | 8 518 5] 8
il K. 11 12 131 14 13
89 | Subscri | S |5 |8 |SWW]S |5 54 85 56 1o 1] 5
he A I e] 131 14 reo 13
81 | Paymen [5 |5 | S 515 51] &
n 1 minde 2111 12 131 14 13
51 | Congact | 5 5 IS5 |5 51 | &
| us 2 12 | PD 131 14 15
51 Abone 515 Sk | 8 5 - sl 5
2 us 2l] 131 14 15
51 FAL alS 5 SHK | 5 5 - - - ul 5
3 Y11 12) PD 3] 14 1%
S1 | Bdiorn | S |5 | 5 |51]S |- - - - - - 5115
4 |Board | 2 | 11| 12 | PD (& 15
§1 | Logowt [8 | - - - - - 81| -
5 2
Copyright i© 2013 IMSEC 132

Nipur ¢f al.: Finite State Machine Based Modeling and Testing of Web Based Applications

A number of mutants for model FSM are generated by making use of mutation operators as described in
section 4. Sample mutants for application are shown in Table P1,P2,P3,

All these FSM’s are activated in their initial states by making use of test cases described in set T, with
three sample mutations the methodology was able to detect some of the errors in the web application.

1. Running the application with input ‘C1 AN &PW Doc’ 1s expected to take the application to the
upload state and upload confirmation and article to be produced as the output. The same is produced
when test data is run on Model FSM. but when run on mutant M2, no output is generated but web
application reaches upload state, That signifies the wrong output generated than expected. This is
the error due to missing output function in web application.

!;-J

Again running the application with input *C1 RN &PW art” is expected to take the application to the
download state and returning back with required document numbered as art as the output. The same
is produced when test data is run on Model FSM, but when run on mutant M3, no output is
generated but web application reaches download state. That signifies the wrong output generated
than expected. This is again the error due to missing output function in web application.

3. Also with input ‘SR & ID’ application should go to the subscription page and returns back the
subscription details but when mutant M1 is run with this test case it landed into payment details
page and no output is generated. Again an error that represents the wrong linking of hypertext in
application.

Conclusions

Mutation testing which is basically a white box testing mechanism can also be used successfully as a
black box testing criteria. Mutation testing when used on specifications can be used as a magical
mechanism for detecting errors of omission which could go unnoticed with any other testing criteria that
emphasize on code. It can be used to ensure completeness and effectiveness of test cases in functional
testing as well. Suggested Methodology could even help developers to embed complete functionalities in
implementations of web applications to avoid panicky situations at users end and hence enhances the
confidence in it. However it seems to be a lengthy approach to follow manually. Automation of
recommended method could fasten the process of error detection,

References

Abdurazik, A., Ammann, P, Ding, W.Y., Offuit, J. 2000. Evaluation of Three Specification-based Testing
Criteria. Sixth IEEE International Conference on Engineering of Complex Computer Systems
(ICECCS2000).

Achkar, H. 2010. Model Based Testing Of Web Applications. STANZ, Sydney, Australia,

Andrews, A. A.. Offutt, J., Alexander, R. T. 2005. Testing Web Applications by Modeling with FSMs.
Software and Systems Modeling, 4,326-345.

Belli, F., Budnik, C. J., Wong, W. E. 2006. Basic Operations for Generating Behavioral Mutants. In
Proceedings of 2nd Workshop on Mutation Analvsis in canjunction with ISSRE. IEEE CS, 10-18.

Beyazit, M., Deistler, T., Gokee, N. 2010. Event-Based Mutation Testing vs, State-Based Mutation
Testing — Comparison Using a Web-based System. Lecture Notes in Informatics, 327-332.

Black, P. E., Okun,V., Yesha, Y. 2000, Mutation Operators for Specifications. In Proceedings of 1 5" I1EEE
International Conference on Automated Software Engineering (ASE2000),

133

VIVECHAN International Journal of Research, Vol 4, 2013

Demillo, E., Lipton, R., Sayward, F. 1978. Hints on test data selection: Help for the Practicing
programmer. JEEE Computer Magazine, 1 1{4), 34-41.

How Tai Wah, K..8. 2003, An analysis of the coupling effect single test data, Science of Computer
programming, 48, 119-161,

Internet world Stats usage and population statistics http://www.internetworldstats.com/stats. html
accessed on 17th January, 2012

Jorgensen, P.C. 2008, Software Testing: A Craftsman’s Approach, Third Edition, Auerbach Publications,
ISBN-13: 9780849374753,

Mathur, A.P. 2008, Foundation of Software testing. Pearson Education Publication,
ISBN:9788131707951.

Patrick, H. Z., Hall, A.V., John, H.R. 1997, Software Unit Test Coverage and Adequacy. ACM Computing
Surveys, 29,4,

Pinto Ferraz Fabbri, S.C., Delamaro, ME., Maldonado, J.C., Masiero, P.C. 1994, Mutation analysis
testing for Finite State Machines. In Proceedings 5th International Symposivan on Software Reliability
Engineering, 220-229,

Sabnani, K.. K., Dahbura, A. T. 1988, A protocol test generation procedure, Computer Networks and
ISDN systems, 15(4), 285-297,

Singh, K., Kumar, R., Kaur, 1. 2010. Testing Web applications using Finite State Machines employing
Genetic Algorithm. International Journal of Engineering Science and Technology, 2(12), 6931-6941,

Copyright © 2013 IMSEC 134

